Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.156
Filtrar
1.
Microb Cell Fact ; 23(1): 105, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594656

RESUMO

BACKGROUND: Pregnenolone and progesterone are the life-important steroid hormones regulating essential vital functions in mammals, and widely used in different fields of medicine. Microbiological production of these compounds from sterols is based on the use of recombinant strains expressing the enzyme system cholesterol hydroxylase/C20-C22 lyase (CH/L) of mammalian steroidogenesis. However, the efficiency of the known recombinant strains is still low. New recombinant strains and combination approaches are now needed to produce these steroid hormones. RESULTS: Based on Mycolicibacterium smegmatis, a recombinant strain was created that expresses the steroidogenesis system (CYP11A1, adrenodoxin reductase, adrenodoxin) of the bovine adrenal cortex. The recombinant strain transformed cholesterol and phytosterol to form progesterone among the metabolites. When 3-methoxymethyl ethers of sterols were applied as bioconversion substrates, the corresponding 3-ethers of pregnenolone and dehydroepiandrosterone (DHEA) were identified as major metabolites. Under optimized conditions, the recombinant strain produced 85.2 ± 4.7 mol % 3-methoxymethyl-pregnenolone within 48 h, while production of 3-substituted DHEA was not detected. After the 3-methoxymethyl function was deprotected by acid hydrolysis, crystalline pregnenolone was isolated in high purity (over 98%, w/w). The structures of steroids were confirmed using TLC, HPLC, MS and 1H- and 13C-NMR analyses. CONCLUSION: The use of mycolicybacteria as a microbial platform for the expression of systems at the initial stage of mammalian steroidogenesis ensures the production of valuable steroid hormones-progesterone and pregnenolone from cholesterol. Selective production of pregnenolone from cholesterol is ensured by the use of 3-substituted cholesterol as a substrate and optimization of the conditions for its bioconversion. The results open the prospects for the generation of the new microbial biocatalysts capable of effectively producing value-added steroid hormones.


Assuntos
Fitosteróis , Progesterona , Bovinos , Animais , Pregnenolona/metabolismo , Esteróis , Esteroides , Colesterol/metabolismo , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Mamíferos/metabolismo , Éteres
2.
Cell Physiol Biochem ; 58(2): 172-181, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643508

RESUMO

BACKGROUND/AIMS: Extracellular acidic conditions impair cellular activities; however, some cancer cells drive cellular signaling to adapt to the acidic environment. It remains unclear how ovarian cancer cells sense changes in extracellular pH. This study was aimed at characterizing acid-inducible currents in an ovarian cancer cell line and evaluating the involvement of these currents in cell viability. METHODS: The biophysical and pharmacological properties of membrane currents in OV2944, a mouse ovarian cancer cell line, were studied using the whole-cell configuration of the patch-clamp technique. Viability of this cell type in acidic medium was evaluated using the MTT assay. RESULTS: OV2944 had significant acid-sensitive outwardly rectifying (ASOR) Cl- currents at a pH50 of 5.3. The ASOR current was blocked by pregnenolone sulfate (PS), a steroid ion channel modulator that blocks the ASOR channel as one of its targets. The viability of the cells was reduced after exposure to an acidic medium (pH 5.3) but was slightly restored upon PS administration. CONCLUSION: These results offer first evidence for the presence of ASOR Cl- channel in ovarian cancer cells and indicate its involvement in cell viability under acidic environment.


Assuntos
Sobrevivência Celular , Neoplasias Ovarianas , Pregnenolona , Animais , Feminino , Camundongos , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Linhagem Celular Tumoral , Pregnenolona/farmacologia , Concentração de Íons de Hidrogênio , Sobrevivência Celular/efeitos dos fármacos , Canais de Cloreto/metabolismo , Canais de Cloreto/antagonistas & inibidores , Técnicas de Patch-Clamp , Potenciais da Membrana/efeitos dos fármacos
3.
Sci Rep ; 14(1): 8050, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580665

RESUMO

Pregnenolone is a key intermediate in the biosynthesis of many steroid hormones and neuroprotective steroids. Sulfotransferase family cytosolic 2B member 1 (SULT2B1a) has been reported to be highly selective to sulfate pregnenolone. This study aimed to clarify the effect of missense single nucleotide polymorphisms (SNPs) of the human SULT2B1 gene on the sulfating activity of coded SULT2B1a allozymes toward Pregnenolone. To investigate the effects of single nucleotide polymorphisms of the SULT2B1 gene on the sulfation of pregnenolone by SULT2B1a allozymes, 13 recombinant SULT2B1a allozymes were generated, expressed, and purified using established procedures. Human SULT2B1a SNPs were identified by a comprehensive database search. 13 SULT2B1a nonsynonymous missense coding SNPs (cSNPs) were selected, and site-directed mutagenesis was used to generate the corresponding cDNAs, packaged in pGEX-2TK expression vector, encoding these 13 SULT2B1a allozymes, which were bacterially expressed in BL21 E. coli cells and purified by glutathione-Sepharose affinity chromatography. Purified SULT2B1a allozymes were analyzed for sulfating activities towards pregnenolone. In comparison with the wild-type SULT2B1a, of the 13 allozymes, 11 showed reduced activity toward pregnenolone at 0.1 µM. Specifically, P134L and R259Q allozymes, reported to be involved in autosomal-recessive congenital ichthyosis, displayed low activity (1-10%) toward pregnenolone. The findings of this study may demonstrate the impact of genetic polymorphism on the sulfation of pregnenolone in individuals with different SULT2B1 genotypes.


Assuntos
Isoenzimas , Pregnenolona , Humanos , Isoenzimas/metabolismo , Escherichia coli/metabolismo , Sulfotransferases/metabolismo , Polimorfismo de Nucleotídeo Único
4.
Cell Rep ; 43(3): 113936, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38489269

RESUMO

Osteoclasts play a central role in cancer-cell-induced osteolysis, but the molecular mechanisms of osteoclast activation during bone metastasis formation are incompletely understood. By performing RNA sequencing on a mouse breast carcinoma cell line with higher bone-metastatic potential, here we identify the enzyme CYP11A1 strongly upregulated in osteotropic tumor cells. Genetic deletion of Cyp11a1 in tumor cells leads to a decreased number of bone metastases but does not alter primary tumor growth and lung metastasis formation in mice. The product of CYP11A1 activity, pregnenolone, increases the number and function of mouse and human osteoclasts in vitro but does not alter osteoclast-specific gene expression. Instead, tumor-derived pregnenolone strongly enhances the fusion of pre-osteoclasts via prolyl 4-hydroxylase subunit beta (P4HB), identified as a potential interaction partner of pregnenolone. Taken together, our results demonstrate that Cyp11a1-expressing tumor cells produce pregnenolone, which is capable of promoting bone metastasis formation and osteoclast development via P4HB.


Assuntos
Neoplasias Ósseas , Neoplasias da Mama , Humanos , Feminino , Osteogênese , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Linhagem Celular Tumoral , Neoplasias Ósseas/metabolismo , Osteoclastos/metabolismo , Pregnenolona/metabolismo , Neoplasias da Mama/patologia , Diferenciação Celular
5.
Sci Rep ; 14(1): 6782, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514798

RESUMO

Pregnenolone sulfate is a steroid metabolite of the steroidogenesis precursor, pregnenolone, with similar functional properties, including immunosuppression. We recently reported an elevation in serum levels of pregnenolone sulfate in children with malaria, contributing to an immunosuppressed state. Yet, the molecular mechanisms in which this steroid exerts its immunoregulatory functions are lacking. In this study, we examined the effects of pregnenolone sulfate on T cell viability, proliferation and transcriptome. We observed a pregnenolone sulfate dose-dependent induction of T cell death and reduction in proliferation. RNA sequencing analysis of pregnenolone sulfate-treated T cells for 2 and 24 h revealed the downregulation of pro-inflammatory genes and the upregulation of the steroid nuclear receptor superfamily, NR4A, as early-response genes. We also report a strong activation of the integrated stress response mediated by the upregulation of EIF2AK3. These results contribute to the knowledge on transcriptional regulation driving the immunoregulatory effects of pregnenolone sulfate on T cells.


Assuntos
Pregnenolona , Esteroides , Criança , Humanos , Pregnenolona/farmacologia , Pregnenolona/metabolismo , Regulação para Cima , Linfócitos T/metabolismo
6.
Neuroscience ; 541: 118-132, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38301739

RESUMO

Aggression is a social behavior that is critical for survival and reproduction. In adults, circulating gonadal hormones, such as androgens, act on neural circuits to modulate aggressive interactions, especially in reproductive contexts. In many species, individuals also demonstrate aggression before reaching gonadal maturation. Adult male song sparrows, Melospiza melodia, breed seasonally but maintain territories year-round. Juvenile (hatch-year) males aggressively compete for territory ownership during their first winter when circulating testosterone is low. Here, we characterized the relationship between the steroid milieu and aggressive behavior in free-living juvenile male song sparrows in winter. We investigated the effect of a 10 min simulated territorial intrusion (STI) on behavior and steroid levels in blood, 10 microdissected brain regions, and four peripheral tissues (liver, pectoral muscle, adrenal glands, and testes). Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we quantified 12 steroids: pregnenolone, progesterone, corticosterone, 11-dehydrocorticosterone, dehydroepiandrosterone, androstenedione, testosterone, 5α-dihydrotestosterone, 17ß-estradiol, 17α-estradiol, estrone, and estriol. We found that juvenile males are robustly aggressive, like adult males. An STI increases progesterone and corticosterone levels in blood and brain and increases 11-dehydrocorticosterone levels in blood only. Pregnenolone, androgens, and estrogens are generally non-detectable and are not affected by an STI. In peripheral tissues, steroid concentrations are very high in the adrenals. These data suggest that adrenal steroids, such as progesterone and corticosterone, might promote juvenile aggression and that juvenile and adult songbirds might rely on distinct neuroendocrine mechanisms to support similar aggressive behaviors.


Assuntos
Aves Canoras , Humanos , Animais , Masculino , Aves Canoras/fisiologia , Corticosterona , Progesterona/farmacologia , Cromatografia Líquida , Espectrometria de Massas em Tandem , Testosterona , Androgênios , Agressão/fisiologia , Estradiol/farmacologia , Pregnenolona/farmacologia
7.
Zhongguo Zhong Yao Za Zhi ; 49(2): 370-378, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38403313

RESUMO

Digitoxin, an important secondary metabolite of Digitalis purpurea, is a commonly used cardiotonic in clinical practice. 3ß-Hydroxysteroid dehydrogenase(3ßHSD) is a key enzyme involved in the biosynthesis of digitoxin. It belongs to the short-chain dehydrogenase/reductase(SDR) family, playing a role in the biosynthesis of cardiac glycosides by oxidizing and isomerizing the precursor sterol. In this study, two 3ßHSD genes were cloned from D. purpurea. The results showed that the open reading frame(ORF) of Dp3ßHSD1 was 780 bp, encoding 259 amino acid residues. The ORF of Dp3ßHSD2 was 774 bp and encoded 257 residues. Dp3ßHSD1/2 had the cofactor binding site TGxxxA/GxG and the catalytic site YxxxK. In vitro experiments confirmed that Dp3ßHSD1/2 catalyzed the generation of progesterone from pregnenolone, and Dp3ßHSD1 had stronger catalytic capacity than Dp3ßHSD2. The expression level of Dp3ßHSD1 was much higher than that of Dp3ßHSD2 in leaves, and digitoxin was only accumulated in leaves. The results implied that Dp3ßHSD1 played a role in the dehydrogenation of pregnenolone to produce progesterone in the biosynthesis of digitoxin. This study provides a reference for further exploring the biosynthetic pathway of cardiac glycosides in D. purpurea.


Assuntos
Digitoxina , Progesterona , Clonagem Molecular , Pregnenolona/metabolismo , Hidroxiesteroide Desidrogenases
8.
Hum Reprod ; 39(2): 393-402, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38037188

RESUMO

STUDY QUESTION: Does ovarian stimulation with highly purified (hp)-HMG protect from elevated progesterone in the follicular phase compared to recombinant FSH (r-FSH) cycles through a different regulation of follicular steroidogenesis? SUMMARY ANSWER: hp-HMG enhanced the Δ4 pathway from pregnenolone to androstenodione leading to lower serum progesterone at the end of the cycle, while r-FSH promoted the conversion of pregnenolone to progesterone causing higher follicular phase progesterone levels. WHAT IS KNOWN ALREADY: Elevated progesterone in the follicular phase has been related to lower clinical outcome in fresh IVF cycles. Progesterone levels are positively correlated to ovarian response, and some studies have shown that when r-FSH alone is used for ovarian stimulation serum progesterone levels on the day of triggering are higher than when hp-HMG is given. Whether this is caused by a lower ovarian response in hp-HMG cycles or to a difference in follicular steroidogenesis in the two ovarian stimulation regimens has not been well characterized. STUDY DESIGN, SIZE, DURATION: A randomized controlled trial including 112 oocyte donors undergoing ovarian stimulation with GnRH antagonists and 225 IU/day of r-FSH (n = 56) or hp-HMG (n = 56) was carried out in a university-affiliated private infertility clinic. Subjects were recruited between October 2016 and June 2018. PARTICIPANTS/MATERIALS, SETTING, METHODS: The women were aged 18-35 years with a regular menstrual cycle (25-35 days) and normal ovarian reserve (serum anti-Müllerian hormone (AMH) = 10-30 pMol/l) undergoing ovarian stimulation for oocyte donation. FSH, LH, estradiol (E2), estrone, progesterone, pregnenolone, 17-OH-progesterone, androstenodione, dehidroepiandrostenodione, and testosterone were determined on stimulation Days 1, 4, 6, and 8 and on day of triggering in serum and in follicular fluid. Samples were frozen at -20°C until assay. Total exposures across the follicular phase were compared by polynomic extrapolation. MAIN RESULTS AND THE ROLE OF CHANCE: Subjects in both groups were comparable in terms of age, BMI, and AMH levels. Ovarian response was also similar: 17.5 ± 7.9 (mean ± SD) versus 16.5 ± 7.5 oocytes with r-FSH and hp-HMG, respectively (P = 0.49). Serum progesterone (ng/ml) on day of trigger was 0.46 ± 0.27 in the hp-HMG group versus 0.68 ± 0.50 in the r-FSH group (P = 0.010). Differences for progesterone were also significant on stimulation days 6 and 8. The pregnenolone: progesterone ratio was significantly increased in the r-FSH group from stimulation day 8 to the day of trigger (P = 0.019). Serum androstenodione (ng/ml) on day of trigger was 3.0 ± 1.4 in the hp-HMG group versus 2.4 ± 1.1 in the r-FSH group (P = 0.015). Differences in adrostenodione were also significant on stimulation Day 8. The pregnenolone:androstenodione ratio was significantly higher in the hp-HMG group (P = 0.012) on Days 6 and 8 and trigger. There were no other significant differences between groups. Follicular fluid E2, FSH, LH, dehidroepioandrostenodione, androstenodione, and testosterone were significantly higher in the hp-HMG than r-FSH group. No differences were observed for progesterone, estrone, 17-OH-progesterone, and pregnenolone in follicular fluid. LIMITATIONS, REASONS FOR CAUTION: All women included in the study were young, not infertile, and had a normal BMI and a good ovarian reserve. The findings might be different in other patient subpopulations. Hormone analyses with immunoassays are subject to intra-assay variations that may influence the results. WIDER IMPLICATIONS OF THE FINDINGS: Stimulation with hp-HMG may prevent progesterone elevation at the end of the follicular phase because of a different follicular steroidogenesis pathway, regardless of ovarian response. This should be considered, particularly in patients at risk of having high progesterone levels at the end of the follicular phase when a fresh embryo transfer is planned. STUDY FUNDING/COMPETING INTEREST(S): Roche Diagnostics provided unrestricted funding for all serum and follicular fluid hormone determinations. J.L.R., M.M., and A.P. have nothing to declare. E.B. has received consulting fees from Ferring, Merck, Gedeon Richter, and Roche and has participated in a research cooperation with Gedeon-Richter. In addition, the author has participated in speakers' bureau and received fees from Ferring, Gedeon Richter, Merck, and Roche. P.A. has received consulting fees from MSD and has participated in speakers' bureau and received fees from Ferring. P.A. also declares travel/meeting support from MSD. E.L. has received consulting fees from Ferring and MSD. In addition, the author has participated in a research cooperation with Gedeon-Richter. Also, the author has participated in speakers' bureau and received fees from Ferring and IBSA, as well as travel/meeting support from IBSA and Gedeon Richter. E.B., P.A., and E.L. also own stocks in IVIRMA Valencia. TRIAL REGISTRATION NUMBER: NCT: NCT02738580. TRIAL REGISTER DATE: 19 February 2016. DATE OF FIRST PATIENT'S ENROLMENT: 03 October 2016.


Assuntos
Fertilização In Vitro , Progesterona , Gravidez , Feminino , Humanos , Fertilização In Vitro/métodos , Taxa de Gravidez , Estrona , Hormônio Foliculoestimulante Humano , Indução da Ovulação/métodos , Testosterona , Pregnenolona
9.
Front Neuroendocrinol ; 72: 101113, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37993022

RESUMO

Advances in neuroendocrinology have led to major discoveries since the 19th century, identifying adaptive loops for maintaining homeostasis. One of the most remarkable discoveries was the concept of neurosteroids, according to which the brain is not only a target but also a source of steroid production. The identification of new membrane steroid targets now underpins the neuromodulatory effects of neurosteroids such as pregnenolone, which is involved in functions mediated by the GPCR CB1 receptor. Structural analysis of steroids is a key feature of their interactions with the phospholipid membrane, receptors and resulting activity. Therefore, mass spectrometry-based methods have been developed to elucidate the metabolic pathways of steroids, the ultimate approach being metabolomics, which allows the identification of a large number of metabolites in a single sample. This approach should enable us to make progress in understanding the role of neurosteroids in the functioning of physiological and pathological processes.


Assuntos
Neuroesteroides , Neuroesteroides/metabolismo , Pregnenolona/metabolismo , Esteroides , Encéfalo/metabolismo
10.
J Biol Chem ; 300(1): 105495, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38006947

RESUMO

Cytochrome P450 (P450, CYP) 11A1 is the classical cholesterol side chain cleavage enzyme (P450scc) that removes six carbons of the side chain, the first and rate-limiting step in the synthesis of all mammalian steroids. The reaction is a 3-step, 6-electron oxidation that proceeds via formation of 22R-hydroxy (OH) and 20R,22R-(OH)2 cholesterol, yielding pregnenolone. We expressed human P450 11A1 in bacteria, purified the enzyme in the absence of nonionic detergents, and assayed pregnenolone formation by HPLC-mass spectrometry of the dansyl hydrazone. The reaction was inhibited by the nonionic detergent Tween 20, and several lipids did not enhance enzymatic activity. The 22R-OH and 20R,22R-(OH)2 cholesterol intermediates were bound to P450 11A1 relatively tightly, as judged by steady-state optical titrations and koff rates. The electron donor adrenodoxin had little effect on binding; the substrate cholesterol showed a ∼5-fold stimulatory effect on the binding of adrenodoxin to P450 11A1. Presteady-state single-turnover kinetic analysis was consistent with a highly processive reaction with rates of intermediate oxidation steps far exceeding dissociation rates for products and substrates. The presteady-state kinetic analysis revealed a second di-OH cholesterol product, separable by HPLC, in addition to 20R,22R-(OH)2 cholesterol, which we characterized as a rotamer that was also converted to pregnenolone at a similar rate. The first oxidation step (at C-22) is the slowest, limiting the overall rate of cleavage. d3-Cholesterol showed no kinetic deuterium isotope effect on C-22, indicating that C-H bond cleavage is not rate-limiting in the first hydroxylation step.


Assuntos
Enzima de Clivagem da Cadeia Lateral do Colesterol , Colesterol , Pregnenolona , Humanos , Adrenodoxina/metabolismo , Colesterol/química , Colesterol/metabolismo , Enzima de Clivagem da Cadeia Lateral do Colesterol/química , Enzima de Clivagem da Cadeia Lateral do Colesterol/isolamento & purificação , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Cinética , Pregnenolona/química , Pregnenolona/metabolismo , Ligação Proteica , Oxirredução , Estrutura Molecular
11.
Sci Total Environ ; 912: 169414, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38114038

RESUMO

BACKGROUND: Exposure to 2,4-dichlorophenoxyacetic acid (2,4-D), a widely used hormonal herbicide, may disrupt steroid hormone homeostasis. However, evidence from population-based studies is limited, especially for one-month-old infants whose steroid hormones are in a state of adjustment to extrauterine life and can be important indicators of endocrine development. This study aimed to explore the associations between maternal 2,4-D exposure during early pregnancy and infant steroid hormone levels. METHODS: The 885 mother-infant pairs were from a birth cohort in Wuhan, China. Maternal exposure to 2,4-D was determined in urine samples from early pregnancy, and nine steroid hormones were determined in infant urine. The associations of maternal 2,4-D exposure with infant steroid hormones and their product-to-precursor ratios were estimated based on generalized linear models, and bioinformatic analysis was conducted with public databases to explore the potential mechanisms involved. RESULTS: The detection frequency of 2,4-D was 99.32 %, and the detection frequency of steroid hormones ranged from 98.42 % to 100.00 %. After adjusting for covariates, an interquartile range increase in 2,4-D concentrations was associated with a 7.84 % decrease in 11-deoxycortisol (95 % confidence interval, CI: -14.12 %, -1.10 %), an 8.09 % decrease in corticosterone (95 % CI: -14.56 %, -1.14 %), an 8.67 % decrease in cortisol (95 % CI: -14.43 %, -2.52 %), a 13.00 % decrease in cortisone (95 % CI: -20.64 %, -4.62 %), and an 11.17 % decrease in aldosterone (95 % CI: -19.62 %, -1.83 %). Maternal 2,4-D was also associated with lower infant cortisol/17α-OH-progesterone, cortisol/pregnenolone, and aldosterone/pregnenolone ratios. In bioinformatic analysis, pathways/biological processes related to steroid hormone synthesis and secretion were enriched from target genes of 2,4-D exposure. CONCLUSIONS: Maternal urinary 2,4-D during early pregnancy was associated with lower infant urinary 11-deoxycortisol, corticosterone, cortisol, cortisone, and aldosterone, reflecting that 2,4-D exposure may interfere with infant steroid hormone homeostasis. Further efforts are still needed to study the relevant health effects of exposure to 2,4-D, particularly for vulnerable populations.


Assuntos
Cortisona , Herbicidas , Gravidez , Lactente , Feminino , Humanos , Exposição Materna , Hidrocortisona , Corticosterona , Aldosterona , Cortodoxona , Progesterona , Pregnenolona , Ácido 2,4-Diclorofenoxiacético
12.
J Neuroinflammation ; 20(1): 293, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062440

RESUMO

BACKGROUND: Depression is two-to-three times more frequent among women. The hypothalamus, a sexually dimorphic area, has been implicated in the pathophysiology of depression. Neuroinflammation-induced hypothalamic dysfunction underlies behaviors associated with depression. The lipopolysaccharide (LPS)-induced mouse model of depression has been well-validated in numerous laboratories, including our own, and is widely used to investigate the relationship between neuroinflammation and depression. However, the sex-specific differences in metabolic alterations underlying depression-associated hypothalamic neuroinflammation remain unknown. METHODS: Here, we employed the LPS-induced mouse model of depression to investigate hypothalamic metabolic changes in both male and female mice using a metabolomics approach. Through bioinformatics analysis, we confirmed the molecular pathways and biological processes associated with the identified metabolites. Furthermore, we employed quantitative real-time PCR, enzyme-linked immunosorbent assay, western blotting, and pharmacological interventions to further elucidate the underlying mechanisms. RESULTS: A total of 124 and 61 differential metabolites (DMs) were detected in male and female mice with depressive-like behavior, respectively, compared to their respective sex-matched control groups. Moreover, a comparison between female and male model mice identified 37 DMs. We capitalized on biochemical clustering and functional enrichment analyses to define the major metabolic changes in these DMs. More than 55% of the DMs clustered into lipids and lipid-like molecules, and an imbalance in lipids metabolism was presented in the hypothalamus. Furthermore, steroidogenic pathway was confirmed as a potential sex-specific pathway in the hypothalamus of female mice with depression. Pregnenolone, an upstream component of the steroid hormone biosynthesis pathway, was downregulated in female mice with depressive-like phenotypes but not in males and had considerable relevance to depressive-like behaviors in females. Moreover, exogenous pregnenolone infusion reversed depressive-like behaviors in female mice with depression. The 5α-reductase type I (SRD5A1), a steroidogenic hub enzyme involved in pregnenolone metabolism, was increased in the hypothalamus of female mice with depression. Its inhibition increased hypothalamic pregnenolone levels and ameliorated depressive-like behaviors in female mice with depression. CONCLUSIONS: Our study findings demonstrate a marked sexual dimorphism at the metabolic level in depression, particularly in hypothalamic steroidogenic metabolism, identifying a potential sex-specific pathway in female mice with depressive-like behaviors.


Assuntos
Depressão , Doenças Neuroinflamatórias , Humanos , Camundongos , Masculino , Feminino , Animais , Depressão/metabolismo , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , Hipotálamo/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Pregnenolona/metabolismo
13.
Front Immunol ; 14: 1229703, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022565

RESUMO

Pregnenolone (P5) is synthesized as the first bioactive steroid in the mitochondria from cholesterol. Clusters of differentiation 4 (CD4+) and Clusters of differentiation 8 (CD8+) immune cells synthesize P5 de novo; P5, in turn, play important role in immune homeostasis and regulation. However, P5's biochemical mode of action in immune cells is still emerging. We envisage that revealing the complete spectrum of P5 target proteins in immune cells would have multifold applications, not only in basic understanding of steroids biochemistry in immune cells but also in developing new therapeutic applications. We employed a CLICK-enabled probe to capture P5-binding proteins in live T helper cell type 2 (Th2) cells. Subsequently, using high-throughput quantitative proteomics, we identified the P5 interactome in CD4+ Th2 cells. Our study revealed P5's mode of action in CD4+ immune cells. We identified novel proteins from mitochondrial and endoplasmic reticulum membranes to be the primary mediators of P5's biochemistry in CD4+ and to concur with our earlier finding in CD8+ immune cells. Applying advanced computational algorithms and molecular simulations, we were able to generate near-native maps of P5-protein key molecular interactions. We showed bonds and interactions between key amino acids and P5, which revealed the importance of ionic bond, hydrophobic interactions, and water channels. We point out that our results can lead to designing of novel molecular therapeutics strategies.


Assuntos
Pregnenolona , Células Th2 , Pregnenolona/metabolismo , Pregnenolona/farmacologia , Células Th2/metabolismo , Simulação de Dinâmica Molecular , Esteroides , Proteínas de Transporte/metabolismo
14.
Nat Plants ; 9(10): 1607-1617, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37723202

RESUMO

Cardenolides are specialized, steroidal metabolites produced in a wide array of plant families1,2. Cardenolides play protective roles in plants, but these molecules, including digoxin from foxglove (Digitalis spp.), are better known for treatment of congenital heart failure, atrial arrhythmia, various cancers and other chronic diseases3-9. However, it is still unknown how plants synthesize 'high-value', complex cardenolide structures from, presumably, a sterol precursor. Here we identify two cytochrome P450, family 87, subfamily A (CYP87A) enzymes that act on both cholesterol and phytosterols (campesterol and ß-sitosterol) to form pregnenolone, the first committed step in cardenolide biosynthesis in the two phylogenetically distant plants Digitalis purpurea and Calotropis procera. Arabidopsis plants overexpressing these CYP87A enzymes ectopically accumulated pregnenolone, whereas silencing of CYP87A in D. purpurea leaves by RNA interference resulted in substantial reduction of pregnenolone and cardenolides. Our work uncovers the key entry point to the cardenolide pathway, and expands the toolbox for sustainable production of high-value plant steroids via synthetic biology.


Assuntos
Cardenolídeos , Digitalis , Cardenolídeos/metabolismo , Plantas/metabolismo , Digitalis/química , Digitalis/metabolismo , Pregnenolona
15.
J Steroid Biochem Mol Biol ; 234: 106388, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37652364

RESUMO

Starting with pregnenolone, a 20-carbonyl group was converted into an amino group through a series of chemical reactions. This amino group was further converted into selenocyanoalkylamide, leading to the synthesis of six pregnenolone selenocyanoalkylamide derivatives. These compounds were then screened for antitumor activity in vitro, yielding promising results. Compounds 4b-4f show higher inhibitory activity than the positive control abiraterone and 2-methoxyestradiol, with IC50 values lower than 10 µmol/L against breast, ovarian, and cervical cancer cell lines that closely related to human hormone expression levels. The Annexin V assay of compound 4f revealed that compounds inhibited tumor cell proliferation primarily through the induction of programmed apoptosis. The zebrafish test results indicated that compound 4d had significant inhibitory activity against MCF-7 cell xenografts in vivo. Moreover, the antibacterial test indicated that compounds 4a and 4d-4e had better inhibitory activity against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) than the positive controls vancomycin and ampicillin. These results suggest that these compounds may hold promise as novel antitumor agents or antimicrobial agents for further study.


Assuntos
Antineoplásicos , Staphylococcus aureus Resistente à Meticilina , Animais , Humanos , Vancomicina , Pregnenolona/farmacologia , Peixe-Zebra , Antibacterianos/farmacologia
16.
Drug Dev Res ; 84(7): 1522-1536, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37571806

RESUMO

Osteoporosis is a significant public health issue in our aging population. It is an excessive bone resorption condition brought on by osteoclastogenesis, which makes bones more brittle. In the present work, a series of novel heterosteroidal derivatives have been synthesized using the microwave technique and were evaluated as antiosteoclastogenic agents. The structures of the newly synthesized compounds have been confirmed using analytical and spectral data. The antiosteoclastogenic activity of the newly synthesized compounds was estimated in vitro against osteoclast-differentiated cells from the RAW 264.7 cell line. The pregnenolone dimer 10, the pyridinotestosterone derivative 2, and the phenylnicotinonitrile pregnenolone derivative 8a attained the most promising antiosteoclastogenic activity displaying IC50 (the half maximal inhibitory concentration) values of 5.45 ± 5.30, 11.88 ± 2.09, and 13.40 ± 3.00 µM, respectively, in comparison with dimethyl itaconate (IC50 = 17.76 ± 3.20 µM) and alendronate (IC50 = 4.48 ± 1.89 µM) as reference compounds. Finally, an in silico ADME (Absorption, Distribution, Metabolism, and Excretion) study was conducted to evaluate the synthesized compounds' pharmacokinetic and drug-likeness properties. The results manifested that almost all the investigated compounds' properties were compatible with the specified optimal range, which indicates their reassuring pharmacokinetic properties.


Assuntos
Reabsorção Óssea , Osteogênese , Humanos , Idoso , Osteoclastos/metabolismo , Micro-Ondas , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/metabolismo , Pregnenolona/metabolismo
17.
J Biol Chem ; 299(8): 105035, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37442234

RESUMO

Neurosteroids, which are steroids synthesized by the nervous system, can exert neuromodulatory and neuroprotective effects via genomic and nongenomic pathways. The neurosteroid and major steroid precursor pregnenolone has therapeutical potential in various diseases, such as psychiatric and pain disorders, and may play important roles in myelination, neuroinflammation, neurotransmission, and neuroplasticity. Although pregnenolone is synthesized by CYP11A1 in peripheral steroidogenic organs, our recent study showed that pregnenolone must be synthesized by another mitochondrial cytochrome P450 (CYP450) enzyme other than CYP11A1 in human glial cells. Therefore, we sought to identify the CYP450 responsible for pregnenolone production in the human brain. Upon screening for CYP450s expressed in the human brain that have mitochondrial localization, we identified three enzyme candidates: CYP27A1, CYP1A1, and CYP1B1. We found that inhibition of CYP27A1 through inhibitors and siRNA knockdown did not negatively affect pregnenolone synthesis in human glial cells. Meanwhile, treatment of human glial cells with CYP1A1/CYP1B1 inhibitors significantly reduced pregnenolone production in the presence of 22(R)-hydroxycholesterol. We performed siRNA knockdown of CYP1A1 or CYP1B1 in human glial cells and found that only CYP1B1 knockdown significantly decreased pregnenolone production. Furthermore, overexpression of mitochondria-targeted CYP1B1 significantly increased pregnenolone production under basal conditions and in the presence of hydroxycholesterols and low-density lipoprotein. Inhibition of CYP1A1 and/or CYP1B1 via inhibitors or siRNA knockdown did not significantly reduce pregnenolone synthesis in human adrenal cortical cells, implying that CYP1B1 is not a major pregnenolone-producing enzyme in the periphery. These data suggest that mitochondrial CYP1B1 is involved in pregnenolone synthesis in human glial cells.


Assuntos
Enzima de Clivagem da Cadeia Lateral do Colesterol , Citocromo P-450 CYP1B1 , Pregnenolona , Humanos , Encéfalo/metabolismo , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1B1/metabolismo , Hidroxicolesteróis/metabolismo , Mitocôndrias/metabolismo , Neuroglia/metabolismo , Pregnenolona/biossíntese , RNA Interferente Pequeno/metabolismo , Esteroides/metabolismo
18.
Br J Pharmacol ; 180(19): 2482-2499, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37194503

RESUMO

BACKGROUND AND PURPOSE: GABAA receptors are regulated by numerous classes of allosteric modulators. However, regulation of receptor macroscopic desensitisation remains largely unexplored and may offer new therapeutic opportunities. Here, we report the emerging potential for modulating desensitisation with analogues of the endogenous inhibitory neurosteroid, pregnenolone sulfate. EXPERIMENTAL APPROACH: New pregnenolone sulfate analogues were synthesised incorporating various heterocyclic substitutions located at the C-21 position on ring D. The pharmacological profiles of these compounds were assessed using electrophysiology and recombinant GABAA receptors together with mutagenesis, molecular dynamics simulations, structural modelling and kinetic simulations. KEY RESULTS: All seven analogues retained a negative allosteric modulatory capability whilst exhibiting diverse potencies. Interestingly, we observed differential effects on GABA current decay by compounds incorporating either a six- (compound 5) or five-membered heterocyclic ring (compound 6) on C-21, which was independent of their potencies as inhibitors. We propose that differences in molecular charges, and the targeted binding of analogues to specific states of the GABAA receptor, are the most likely cause of the distinctive functional profiles. CONCLUSIONS AND IMPLICATIONS: Our findings reveal that heterocyclic addition to inhibitory neurosteroids not only affected their potency and macroscopic efficacy but also affected innate receptor mechanisms that underlie desensitisation. Acute modulation of macroscopic desensitisation will determine the degree and duration of GABA inhibition, which are vital for the integration of neural circuit activity. Discovery of this form of modulation could present an opportunity for next-generation GABAA receptor drug design and development.


Assuntos
Pregnenolona , Receptores de GABA-A , Receptores de GABA-A/metabolismo , Pregnenolona/farmacologia , Pregnenolona/metabolismo , Ácido gama-Aminobutírico/farmacologia
19.
Neuropharmacology ; 233: 109530, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37037282

RESUMO

Neurosteroids are important endogenous modulators of GABAA receptor-mediated neurotransmission within the CNS and play a vital role in maintaining normal healthy brain function. Research has mainly focussed on neurosteroids such as allopregnanolone and tetrahydro-deoxycorticosterone (THDOC) which are allosteric potentiators of GABAA receptors, whilst the sulphated steroids, including pregnenolone sulphate (PS), which inhibit GABAA receptor function, have been relatively neglected. Importantly, a full description of PS effects on inhibitory synaptic transmission, at concentrations that are expected to inhibit postsynaptic GABAA receptors, is lacking. Here, we address this deficit by recording inhibitory postsynaptic currents (IPSCs) from rat hippocampal neurons both in culture and in acute brain slices and explore the impact of PS at micromolar concentrations. We reveal that PS inhibits postsynaptic GABAA receptors, evident from reductions in IPSC amplitude and decay time. Concurrently, PS also causes an increase in synaptic GABA release which we discover is due to the activation of presynaptic TRPM3 receptors located close to presynaptic GABA release sites. Pharmacological blockade of TRPM3 receptors uncovers a PS-evoked reduction in IPSC frequency. This second presynaptic effect is caused by PS activation of inwardly-rectifying Kir2.3 channels on interneurons, which act to depress synaptic GABA release. Overall, we provide a comprehensive characterisation of pre- and postsynaptic modulation by PS of inhibitory synaptic transmission onto hippocampal neurons which elucidates the diverse mechanisms by which this understudied neurosteroid can modulate brain function.


Assuntos
Neuroesteroides , Canais de Cátion TRPM , Ratos , Animais , Receptores de GABA-A/metabolismo , Neuroesteroides/farmacologia , Transmissão Sináptica , Pregnenolona/farmacologia , Hipocampo , Potenciais Pós-Sinápticos Inibidores , Ácido gama-Aminobutírico/farmacologia
20.
Toxicol Lett ; 379: 76-86, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36965607

RESUMO

3ß-Hydroxysteroid dehydrogenase/steroid Δ5,4-isomerase 1 (3ß-HSD1) plays a critical role in the biosynthesis of progesterone from pregnenolone in the human placenta to maintain normal pregnancy. Whether they inhibit placental 3ß-HSD1 and mode of inhibition remains unclear. In this study, we screened 21 pesticides and fungicides in five classes to inhibit human 3ß-HSD1 and compared them to rat homolog 3ß-HSD4. 3ß-HSD activity was measured by catalyzing pregnenolone to progesterone in the presence of NAD+. Of the 21 chemicals, azoles (difenoconazole), thiocarbamates (thiram and ferbam) and organochlorine (hexachlorophene) significantly inhibited human 3ß-HSD1 with half maximal inhibitory concentration (IC50) values of 2.77, 0.24, 0.68, and 17.96 µM, respectively. We also found that difenoconazole, ferbam and hexachlorophene are mixed/competitive inhibitors of 3ß-HSD1 while thiram is a mixed/noncompetitive inhibitor. Docking analysis showed that difenoconazole and hexachlorophene bound steroid-binding site. Difenoconazole and hexachlorophene except thiram and ferbam also significantly inhibited rat 3ß-HSD4 activity with IC50 of 1.12 and 2.28 µM, respectively. Thiram and ferbam significantly inhibited human 3ß-HSD1 possibly by interfering with cysteine residues, while they had no effects on rat 3ß-HSD4. In conclusion, some pesticides potently inhibit placental 3ß-HSD, leading to the reduction of progesterone formation.


Assuntos
Fungicidas Industriais , Praguicidas , Humanos , Ratos , Feminino , Gravidez , Animais , Placenta/metabolismo , Fungicidas Industriais/toxicidade , Progesterona , 3-Hidroxiesteroide Desidrogenases/metabolismo , Praguicidas/toxicidade , Tiram , Hexaclorofeno , Esteroides , Pregnenolona/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...